Difference between revisions of "EmonPi"
(→Port Map) |
(→Raspberry Pi) |
||
Line 78: | Line 78: | ||
|} | |} | ||
− | ===Raspberry Pi=== | + | ===Raspberry Pi GPIO=== |
{| {{table}} class="wikitable" | {| {{table}} class="wikitable" |
Revision as of 15:08, 3 April 2015
Raspberry Pi Energy Monitoring Shield
Hardware Technical Wiki Documentation - IN DEVELOPMENT!
Contents
- 1 Technical Features
- 2 Overview Diagram
- 3 Port Map
- 4 Raspberry Pi Compatibility
- 5 Power Supply
- 6 SD Card Image
- 7 Uploading Arduino Firmware
- 8 Connectivity
- 9 Electrical Characteristics
- 10 Electrical Characteristics
- 11 Open-Hardware Design Files
- 12 Open Development
- 13 Physical Dimensions
- 14 License
- 15 Media
- 16 Environmental & Life Cycle
- 17 Disclaimer
Technical Features
- 2 x CT Current Sensor Inputs - designed for 100A max YHDC clip-on SCT-013-000
- 1 x AC Voltage Input - designed for 9V AC power adapter
- Arduino compatible ATmega328P - sketch upload direct from the Pi via GPIO serial
- RJ45 connector for connecting DS18B20 temperature sensors, IRQ pulse counting sensor, and access to power and spare I/O including analog and PWM
- RFM69CW 433Mhz RF Radio
- I2C LCD (16 x 2) with control push button
- Raspberry Pi Shutdown Button
Overview Diagram
Port Map
emonPi ATmega328
Arduino Pin | AVR Special Function | emonPi V1.6 Atmega 328 | Raspberry Pi |
Analog 0 (D14) | AC Voltage | ||
Analog 1 (D15) | CT1 | ||
Analog 2 (D16) | CT2 | ||
Analog 3 (D17) | |||
Analog 4 (D18) | (SDA) | ||
Analog 5 (D19) | (SCL) | ||
Analog 6 (D20) | RJ45 pin 8 – ADC6 / Dig20 | ||
Analog 7 (D21) | |||
Digital 0 | (RXD) | FTDI Tx | GPIO 14 / pin 8 |
Digital 1 | (TXD) | FTDI Rx | GPIO 15 / pin 10 |
Digital 2 | (int0) PWM | RFM12B/69CW INT / (JP5 – RJ45 pin 7) | |
Digital 3 | (int1) PWM | RJ45 pin 6 – Pulse counter | |
Digital 4 | RJ45 pin 4 – one-wire DS18B20 | ||
Digital 5 | PWM | Raspi GPIO 17 / Pin 11 | GPIO 17 / Pin 11 |
Digital 6 | PWM | OOK Tx | |
Digital 7 | |||
Digital 8 | Shutdown PTM Button | ||
Digital 9 | PWM | emonPi PCB LED | |
Digital 10 | (SS) PWM | RFM69CW SEL | |
Digital 11 | (MOSI) PWM | RFM69CW SDI | |
Digital 12 | (MISO) | RFM69CW SDO | |
Digital 13 | (SCK) | RFM69CW SCK |
Raspberry Pi GPIO
Raspberry Pi GPIO | RasPi Function | emonPi V1.6 ATmega328 |
2 (0 REV1) | I2C | SDA I2C LCD |
3 (1 REV 1) | I2C | SCL I2C LCD |
4 | ATmega328 reset | |
7 | SPI CS | |
8 | SPI CS | |
9 | SPI | |
10 | SPI | |
11 | SPI | |
14 | UART Tx | Dig 0 /Rx |
15 | UART Rx | Dig 1 / Tx |
17 (pin 11) | Atmega Dig 5 – shutdown signal | |
18 | ||
22 | ||
23 (pin 16) | LCD push button | |
24 | ||
25 | ||
27 (21 REV 1) |
All unused Raspberry Pi ports can be used to connect additional peripherals, make sure to take account of additional current requirements.
Raspberry Pi Compatibility
The emonPi has been designed to with the Raspberry Pi Model B+ and Pi2.
The emonPi will also work on the Model-B, although due to physical differences it won't fit inside the emonPi aluminium case. The use the emonPi on the Model B a 13-pin GPIO extender is needed instead of the 20-pin extender included; please leave a note at checkout when ordering.
Power Supply
The emonPi is powered by 5V DC via a mini-B-USB socket. The Raspberry Pi is powered by the emonPi via the GPIO pins. The emonPi board itself runs at 3.3V provided by on on-board voltage regulator. The Raspberry Pi's 3.3V rail is left un-touched by the emonPi.
We recommend at least a 1.2A 5V USB power supply
SD Card Image
Based on Raspbien
Download
Build
Run emonPi install script. See script for details
$ git clone https://github.com/openenergymonitor/emonpi.git
$ cd emonpi
$ sudo ./install
Uploading Arduino Firmware
.hex file can be uploaded:
$ avrdude -v -c arduino -p ATMEGA328P -P /dev/ttyAMA0 -b 115200 -U flash:w:sketch_name.hex
For further info see avrdude-rpi readme
Connectivity
RFM69CW
OOK
RJ45 Socket
This is not an Ethernet socket! Do not plug into an Ethernet router, this will cause the emonPi power rail to be shorted. This will be fixed in next rev of emonPi. As a precaution the emonPi V1.5 will be shipped with a protector cap on this RJ45 socket.
The emonPi RJ45 socket can be used to connect multiple DS18B20 temperature sensors, an optical pulse counting sensor or access power rails and aux I/O/
The RJ45 uses standard pinout used by other manufacturers of DS18B20 temperate sensing hardware such as Sheep Walker Electronics
DS18B20 Temperature
A DS18B20 digital temperature sensors can easily be connected by the emonPi by connecting the sensors into the emonPi's RJ45 connector. The default firmware (discrete sampling) supports auto-detecting and reading from of up to six DS18B20 sensors.
RJ45 to Terminal Block Breakout
Encapsulated DS18B20 temperature sensor
Further RJ45 breakouts are available from Sheep Walk Electronics
Pulse Counting
Many meters have pulse outputs, including electricity meters (single phase, 3-phase, import and export), gas meters, water flow meters etc. The pulse output may be a flashing LED or a switching relay (usually solid state) or both. We recommend using the optical interface where available as this decouples the monitoring equipment from any high/mains voltages.
In the case of an electricity meter, a pulse output corresponds to a certain amount of energy passing through the meter (kWh/Wh). For single-phase domestic electricity meters (eg. Elster A100c) each pulse usually corresponds to 1 Wh (1000 pulses per kWh). For water and gas meters they will usually be marked to show the quantity of water (litres/gallons) or of gas (cubic meters/cubic feet) that each pulse represents.
The standard emonPi has one spare interrupt input (IRQ 1, Dig3) which can be used for pulse counting. This is accessible on the RJ45 socket
The second interrupt IRQ0 is usually used by the RFM69CW module on the emonPi. If the RF module is not present this interrupt can be jumped on the PCB (JP5) to be accessible on RJ45, see below for pin out:
Aux I/O
Unused input / output ADC 6 / Digital 20 is available on RJ45 connector for general purpose.
Electrical Characteristics
Electrical Characteristics
Function | Parameter | Min | Recommended
Max / typical |
Absolute Max
|
Notes |
CT 1-2 | Monitoring Power @ 240V | 23kW | 60kW | Using 22R burden and YHDC SCT-013-00 with 22 turns | |
3.3V Rail current output | When powering with 5V USB | 150mA | 168mA | Limitation SOT22 MCP1700 Ta=40C Vi=5.25V | |
5V Input Voltage | USB | +3.4V | +6V | +6.5V (see note 1) | See note 1 |
3.3V Supply Voltage | on 3.3V supply rail | 2.6V * | 3.3V | 3.9V * | *ADC readings will be incorrect if Vcc!=3.3V |
Power Consumption with Raspberry Pi 2 | @3.3V | 7mA no RasPi - 14mA RasPi Halted | 300mA RasPi idle | 500mA+ RasPi Load | With ATmega328, RFM69CW, Edimax WIFI + RasPi2 |
Open-Hardware Design Files
See emonPi hardware GitHub repo
Open Development
The emonPi has been developed with input from the OpenEnergyMonitor community. See origional development OpenEnergyMonitor.org forum thread.
[emonPi Development Photos Album
Physical Dimensions
PCB: 99.2mm x 76.1mm Enclosure: 99mm x 85mm x 50mm
License
The emonPi is part of the OpenEnergyMonitor.org project
The hardware designs (schematics and CAD files) are licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
The firmware is released under the GNU GPL V3 license
The documentation is subject to GNU Free Documentation License
The hardware designs follow the terms of the OSHW (Open-source hardware) Statement of Principles 1.0
Media
Environmental & Life Cycle
Disclaimer
OUR PRODUCTS AND ASSEMBLY KITS MAY BE USED BY EXPERIENCED, SKILLED USERS, AT THEIR OWN RISK. TO THE FULLEST EXTENT PERMISSIBLE BY THE APPLICABLE LAW, WE HEREBY DISCLAIM ANY AND ALL RESPONSIBILITY, RISK, LIABILITY AND DAMAGES ARISING OUT OF DEATH OR PERSONAL INJURY RESULTING FROM ASSEMBLY OR OPERATION OF OUR PRODUCTS.
The OpenEnergyMonitor system is sold as a development kit to empower members of the openenergymonitor community to to get involved with the OpenEnergyMonitor open-source energy monitoring development project.
Your safety is your own responsibility, including proper use of equipment and safety gear, and determining whether you have adequate skill and experience. OpenEnergyMonitor and Megni registered partnership disclaims all responsibility for any resulting damage, injury, or expense. It is your responsibility to make sure that your activities comply with applicable laws, including copyright. Always check the webpage associated with each unit before you get started. There may be important updates or corrections. All use of the instructions, kits, projects and suggestions given both by megni.co.uk, openenergymonitor.org, shop.openenergymonitor.org and wiki.openenergymonitor.org are to be used at your own risk. The technology (hardware , firmware and software) are constantly changing, documentation (including build guide and instructions) may not be complete or correct.
If you feel uncomfortable with assembling or using any part of the kit / unit, please return it to us, we will happy to give a full refund.